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Overview

Leverage synergy between some Aerospace and Computer Science disciplines to develop certified
control software

Mathematical foundations

Control theory, dynamical systems, optimization [Model level]

Formal logic, theorem proving, lattices, semantics [Code level]

Controllers are

realizations of particular dynamical systems [AE view]

embedded systems of some particular restricted types [CS view]

What we want

Connect model and implementation

Provide formal justification of their equivalence

Translate safety properties of models to safety guarantees of corresponding code

Our focus

Use of autocoders to implement models

Fully automated verification at source code level

Analysis as independent of specific autocoder as possible



Motivation: Autocoders in Industry

Autocoders are being increasingly used

A prominent example: The X43 scramjet vehicle program

Goal:

To design and generate flight control software including flight control, propulsion, actuators and
sensors
Minimize manual coding and debugging

Approach:

Use Simulink to model and validate control systems
Real-Time Workshop to automatically generate flight code

Analysis:

Reduced development time by months
Accurately predicted separation clearance
Aided in achieving SEI CMM (Software Engineering Institute Capability Maturity Model) Level 5
process rating



Problem

Correctness of model does not ensure correctness of code
Different implementations of the same model are sometimes possible

Translation needs some semantic knowledge about the models

Autocoders need to make choices (eg. transfer function to state space,integration schemes)

Some implementations may be preferrable due to better behavior

Exact numerical equivalence between model and code is impossible

Typical numerical approximations:

discretization of continuous states

conversion to finite precision (rounding,truncating)

use of unevenly distributed numeric types instead of reals or rationals

restriction of computation to a processor-dependent bounded interval

interval equality (|x − y| < ǫ) instead of exact equality (x == y)



Model vs Code - Example 1

Consider the following system:
xn+1 = 1 − a + axn

x0 = 10, 0 < a < 1

At the model level, this system converges to 1:
∀ǫ > 0,∃n0, |xn − 1| < ǫ whenever n > n0

However, this implementation does not converge to 1.0:

int n;/*32-bit*/float e=0.1, x=10.0, d=8.046e-7;
float a=1.-d;
for (n=0;;n++) {

if(x-1.<e && 1.-x<e) break;
x = d + a*x;

}



Model vs Code - Example 2

Consider the system ẋ = Ax

The corresponding Euler discretization is
xn+1 = (I + hA)xn

Example: Let A be given by:

A =

26666666666666664

−0.05 0.75 −0.7625 0.0125 0.025 −0.775 −0.7875 0.0375

−0.75 −0.05 −0.0125 0.7625 0.775 −0.025 −0.0375 0.7875

0.7625 0.0125 −0.05 −0.775 0.7875 −0.0125 −0.025 0.8

−0.0125 −0.7625 0.775 −0.05 0.0125 −0.7875 −0.8 0.025

−0.025 −0.775 −0.7875 −0.0125 −0.05 0.8 −0.8125 0.0125

0.775 0.025 0.0125 0.7875 −0.8 −0.05 −0.0125 0.8125

0.7875 0.0375 0.025 0.8 0.8125 0.0125 −0.05 −0.825

−0.0375 −0.7875 −0.8 −0.025 −0.0125 −0.8125 0.825 −0.05

37777777777777775

Behavior of the discretization depends on the choice of
parameter h



Model vs Code - Example 2



Model vs Code - Example 3

Autocoders may have bugs.

Some Real-Time Workshop bugs listed by Mathworks:

Incorrect code generation Non-inlined S-Function block with
port-based sample times in multitasking model that uses
continuous time (Open)

Exported global variable name Incorrect code if you use tid
or controlPortIdx Description (Fixed in Last Version)

Incorrect code generation Real-Time Workshop generates
invalid code due to block output optimization settings
(Fixed in Last Version)

Version Open Fixed from Previous Version

R2007a 18 40

R2006b 50 15

R2006a 51 43



Goal - Large view

Given
A model
Some guarantees on its behavior
(correctness,bounds,stability)
A trustworthy autocoder

We want to transfer guarantees to source code level
Correctness of implementation
Termination analysis and stability
Proof of functional equivalence between model and
implementation



A Simple Model

Consider the simple model

ẋ = Ax + bu

y = cx

x(0) = x0

x ∈ Rn×1, u, y ∈ R

c ∈ R1×n, A ∈ Rn×n

Questions:

How to translate model into code?

How to prove properties about model?

Does the translated code have similar properties?



System Properties -Stability

Stability
Asymptotic: x → 0 as t → ∞

Regular: x remains bounded
BIBO: A bounded input produces a bounded output

Criteria for stability depends on eigenvalues of matrix A

Continuous systems: eigenvalues must have negative
real parts
Discrete systems: eigenvalues must lie inside unit
circle



System Properties -Stability

Alternative characterization

Generalizes to non-linear systems

Similar to rank function in termination analysis

A function measures progress towards goal

For linear systems: V (x) = x′Px, with P positive definite.

Existence criteria
Continuous case: A′P + PA + Q = 0

Discrete case: A′PA + Q = P



Code Translation - Manual

A = [0.999, 0; 0, 1];

c = [1, 0];

b = [2; 2];

x = [1000; 0];

while 1

u = fscanf(stdin,"%f");

x = A*x + b*u;

y = c*x;

fprintf(stdout,"%f\n",y);

end

#include <stdio.h>

double A[2][2] = { {0.999, 0}, {0, 1} };

double c[2] = { 1, 0 };

double b[2] = { 2, 2 };

double x[2] = { 1000, 0 };

double u,y;

void main(void)

{

int i,j;

double x_new[2];

while(1)

{

fscanf(stdin,"%f",&u);

for(i=0;i<2;i++) {

x_new[i] = 0;

for(j=0;j<2;j++) x_new[i] += A[i][j]*x[j];

x_new[i] += b[i]*u;

}

for(i=0;i<2;i++) x[i] = x_new[i];

y = 0; for(i=0;i<2;i++) y += c[i]*x[i];

fprintf(stdout,"%f\n",y);

}

}



Code Translation - RTW

Complicated output (pointers,casts,bitfields,. . . )

Ad-hoc implicit semantics

Template based

SBUILD
engine

Simulink
Model

Block
Templates

RTW
Model

TLC
engine

TLC
Program Executable

C
Code

C
compiler



Alternatives for Framework

Given a proof at the spec level, how to extend it to the
code level?

Alternatives:
1. Prove that translation preserves properties.
(a) Certified compiler
(b) Credible compiler
(c) Pattern matching

2. Create proof at code level
(a) Template generator
(b) Decompiler
(c) Direct proof

3. Mixed approaches



Proof Carrying Code

Certifying
Compiler

Compiled code

Verification
Condition
Generator

VC
Theorem
Prover Proof Proof

Checker

VC

Trusted
Untrusted

Annotations

Compiler is not essential, but annotations are

VCG performs symbolic evaluation

Prover in original PCC did type-checking only

Checker used the Edimburg Logical Framework (very
complicated)



Parametric Abstract Domains

Parametric abstract domains: Partitions of state space
invariant wrt atomic operations in code. General form:

Df (p) = {x ∈ S : f(p, x) ≥ 0}
⋃

p Df (p) = S

Hoare triples:{x ∈ Df (p)}S{x ∈ Df (q)}

Idea: Parametric abstract domains (PAD) make it possible to
avoid exponential explosion when formally verifying
numerically bound software, and in particular control
systems software.



Ellipsoidal Abstract Domain

Direct definition:

E(P ) = {x ∈ R
n : xtPx ≤ 1}

Reverse definition:

E†(P ) = {x ∈ R
n :

(

1 xt

x P

)

≥ 0}

Both equivalent when P invertible



Ellipsoidal Invariants

initialize(x); /* x is the state */

loop:

read(y); /* y is the input from the plant */

compute(u,x,y); /* u is the output to the plant */

update(x,y);

write(u);

goto loop;

Figure 1: Pseudocode for the main loop of a controller

x0 ∈ E(P0)

xn+1 = f(xn, yn)

un+1 = g(xn, yn)

Figure 2: High-level specification of a typical controller



Invariant Propagation - 1

initialize(x); /* x is the state */

[[x ∈ E(P0)]]

loop:

[[x ∈ E(P0)]]

read(y); /* y is the input from the plant */

compute(u,x,y); /* u is the output to the plant */

update(x,y);

write(u);

[[x ∈ E(P1)]]

goto loop;



Invariant Propagation - 2

initialize(x); /* x is the state */

[[x ∈ E(P0)]]

loop:

[[x ∈ E(P0) ∨ x ∈ E(P1)]]

read(y); /* y is the input from the plant */

compute(u,x,y); /* u is the output to the plant */

update(x,y);

write(u);

[[x ∈ E(P1) ∨ x ∈ E(P2)]]

goto loop;



Invariant Propagation - 3

initialize(x); /* x is the state */

[[x ∈ E(P0)]]

loop:

[[

W

n≥0
x ∈ E(Pn)]]

read(y); /* y is the input from the plant */

compute(u,x,y); /* u is the output to the plant */

update(x,y);

write(u);

[[

W

n≥1
x ∈ E(Pn)]]

goto loop;



Invariant Propagation - 4

initialize(x); /* x is the state */

[[x ∈ E(P )]]

loop:

[[x ∈ E(P )]]

read(y); /* y is the input from the plant */

compute(u,x,y); /* u is the output to the plant */

update(x,y);

write(u);

[[x ∈ E(P )]]

goto loop;



Invariant Propagation - 5

initialize(x); /* x is the state */

[[x ∈ E(P )]]

loop:

[[x ∈ E(P )]]

[[x ∈ f−1(E(P ))]]

read(y); /* y is the input from the plant */

compute(u,x,y); /* u is the output to the plant */

update(x,y);

write(u);

[[x ∈ E(P )]]

goto loop;



Invariant Propagation - 6

initialize(x); /* x is the state */

[[x ∈ E(P )]]

loop:

[[x ∈ E(P )]]

Assume P ⊂ f−1(E(P ))

[[x ∈ f−1(E(P ))]]

read(y); /* y is the input from the plant */

compute(u,x,y); /* u is the output to the plant */

update(x,y);

write(u);

[[x ∈ E(P )]]

goto loop;

Note: For linear cases, assumptions are Lyapunov
inequality: ∃P, P ≥ AtPA.



Intersection Rule

Given quadratic constraints of the form x ∈ C(P ), we have:

x ∈ C(P1) . . . x ∈ C(Pn)

∀~λ ∈ Xn : x ∈ C(
∑n

i=1 λiPi)

Special case: disjoint variables

{x1 ∈ E(P1)} . . . {xn ∈ E(Pn)}

∀λ ∈ Xn, {x1 ⊕ · · · ⊕ xn ∈ E











λ1P1 0 . . . 0

0 λ2P2 . . . 0

. . . . . . . . . . . .

0 0 . . . λnPn











}



Incremental introduction

Lemma 1 Let λ1 = (0, 1), λ2 ∈ X
2, . . . , λn ∈ X

2 be a family of
2-dimensional convex combinators and let x ∈ R

n be any
arbitrary value such that

n
∑

k=1

xkλ
k
2

n
∏

j=k+1

λ
j
1 ≤ 1

Then, there exists a convex combinator λ̂ ∈ X
n such that

n
∑

k=1

xkλ̂k ≤ 1

Based on assignment λ̂k = λk
2

∏n
j=k+1 λ

j
1



Projection Rule

Lemma 2 Let x ∈ R
n and y ∈ R

m be two disjoint vectors
that satisfy the joint constraint

{x ⊕ y ∈ E

(

P Rt

R Q

)

}

1. if Q invertible, then the vector x satisfies
{x ∈ E(P − RtQ−1R)}.

2. if R is null, then the vector x satisfies {x ∈ E(P )}.



Assignment Rules

Lemma 3 An assignment of a vector to a linear transformation of itself given by an

invertible matrix A is associated to the Hoare triple

{x ∈ E(P )} x = A*x; {x ∈ E(A
−t

PA
−1)} (1)

Lemma 4 Let A be an n×m matrix. Then, the following triple holds:

{x ∈ E(P )} y = A*x;

8>>><>>>:

∀λ ∈ R,

x⊕ y ∈ E(

0� P 0

0 0

1A+ λ

0� At

−I

1A� A −I

�

)

9>>>=>>>;

If P is invertible, then the following triple also holds:

{x ∈ E†(P̂ )} y = A*x;

8>>><>>>:
∀ǫ ∈ R,

x⊕ y ∈ E†

0� P̂ P̂At

AP̂ AP̂At + ǫI

1A
9>>>=>>>;

where P̂ = P−1.



Example of Rule Application

x[i] = x[i] + a[i][j]*x[j];

i and j are integer indices

x is the state

a is a constant array, not part of the state

Assignment is

x← (I + aijEij)x

Therefore

{

0� x

y

1A ∈ E†(M)} x[i] = x[i] + a[i][j]*x[j]; {

0� x

y

1A ∈ E†(M⋆)}

where M
⋆ =

0� TPT t TRt

RT t Q

1A and T = I + aijEij .



Rectangular vs Ellipsoidal Domains

Define rectangle as R(l1, . . . , ln) =
∏n

i=1[−
li
2 , li

2 ]

Lemma 5 Let ~λ ∈ X
n be a convex combinator, and let P~λ

be

the matrix (δijλi

√

2l−1
i )ni,j=1, where δij is the Kronecker

delta. Then we have

R(l1, . . . , ln) ⊂ E(P~λ
)

Furthermore, the right-hand side of (5) is a limit of
non-degenerate ellipsoids in the following sense:

R(l1, . . . , ln) =
⋂

~λ∈(0,1)n

E(P~λ
)



Abstract compilation

Look at Hoare propositions as a program in an abstract domain

Initial condition is input

Assume initial state and control are uniformly bounded

Form state comprising all variables in program

Boundedness means state lives initially inside a circle or rectangle

Execute Hoare propositions in abstract domain

Propagate ellipsoidal constraints forward

Proving stability basically means proving that output lies inside input

The proof consists of solving a Lyapunov equation naturally arising from

program execution.



Abstract compilation - Example

void main(void)

{

int i,j;

double x[2] = { 100.0, 200.0 }, x_new[2]

double u = 10.0;

while(1)

{

for(i=0;i<2;i++) x_new[i] = 0;

for(i=0;i<2;i++)

for(j=0;j<2;j++)

x_new[i] += A[i][j]*x[j];

for(i=0;i<2;i++) x_new[i] += b[i]*u;

for(i=0;i<2;i++) x[i] = x_new[i];

y = 0; for(i=0;i<2;i++) y += c[i]*x[i];

fprintf(stdout,"%f\n",y);

}

}

x = P; % P(2,2) from specs

u = Q; % Q from specs

while 1,

for i=1:2, aux = II(x_new)-EE(x_new,i); x_new = aux*x_new*aux’;

end

for i=1:2,

for j=1:2,

aux = [II(x_new), A(i,j)*EE(A,i,j); ZZ(x_new), II(x)];

aux = aux*[x_new;x]*aux’;

x_new = aux(1:size(x_new),:); x = aux(1+size(x_new),:);

end

end

for i=1:2,

aux = [II(u), ZZ(x_new); b(i)*EE(b,i), II(x_new)];

aux = aux*[u;x_new]*aux’;

u = aux(1:size(u),:); x_new = aux(1+size(u),:);

end

y = 0;

for i=1:2,

aux = [II(y),c(i)*EE(c,i);ZZ(y),II(x)]; aux=aux*[y;x]*aux’;

y = aux(1:size(y),:); x = aux(1+size(y),:);

end

if(y < R), % R comes from specs

break

end

end



More complicated rules

Given a function f such that |f(x)| ≤ |x|, we have

{x ∈ E(P )}u = f(x);











∃µ0,∀µ ∈ [0, µ0],

x ⊕ u ∈ E(
P − µI 0

0 µI
)











Introduces non-deterministic behavior

Breaks equivalency between direct and reverse ellipsoids

Often appears when x = x + bf(cx) is expanded.



More complicated rules

Given a function f such that |f(x)| ≤ |x|, we have

{x ∈ E(P )}u = f(x);











∃µ0,∀µ ∈ [0, µ0],

x ⊕ u ∈ E(
P − µI 0

0 µI
)











Transformation rule:

{x ∈ E(P )}

y = cx

u = f(y)

x = x + bu

{x ∈ E(P ) ∧ u2 ≤ y2 ∧ (y − cx)2 = 0}



More complicated rules

{x ∈ E(P ) ∧ u2 ≤ y2 ∧ (y − cx)2 = 0}

equivalent to
{∀λ ∈ R, µ ≥ 0, xP tx + λ(y − cx)2 + µ(u2 − y2) ≤ 1}

equivalent to
{∀λ ∈ R, µ ≥ 0, ( x y u )t ∈ E†(Mλµ)}

Mλµ =







S−1 S−1ηct 0

ηcS−1 cP−1ct

1+ηµcP−1ct 0

0 0 µ−1







S = P − ηµctc

η = λ
λ−µ



Example

{x ∈ E†(P )}
y = c*x;

{x ⊕ y ∈ E†

(

P Pct

cP cPct + ǫyI

)

= E†(P1(ǫy))}

u = f(y);

{x ⊕ y ⊕ u ∈ E†

(

−ǫuP1(ǫy)[P1(ǫy) − ǫuI]−1 0

0 ǫuI

)

=

E†(P2(ǫy, ǫu))}
x = x + b*u;

{x ⊕ y ⊕ u ∈ E†(AP2(ǫy, ǫu)At), A =







I 0 b

0 I 0

0 0 I






}

Figure 3: Expansion of assignment x = x + bf(cx)



Code-related rules

Constant folding

Push arrays to bottom of structures

Convert pointer arithmetic to index arithmetic

Symbolic interpretation to reduce number of variables

Dereference leftover pointers

Work around casts

k = 3;

p = &(a[k]);

q = b;

for(i=0;i<n;i++)

*p++ = *q++;

s[j].t = *(p-1);

==>

p_i = 3;

q_i = 0;

for(i=0;i<n;i++)

a[p_i++] = b[q_i++];

s.t[j] = a[p_i-1];



Code-related rules

Constant folding

Push arrays to bottom of structures

Convert pointer arithmetic to index arithmetic

Symbolic interpretation to reduce number of variables

Dereference leftover pointers

Work around casts

if(t > 0) p = func1;

else p = func2;

(*p)(s);

x = s->f1;

==>

struct s s_d;

s_d = *s;

if(t > 0)

s_d = func1(s_d);

else

s_d = func2(s_d);

x = s_d.f1;



Further generalizations

Identify abstract domain: difficult

Identify main invariant: difficult from scratch, medium
from model

Separate state from data: easy to medium

Transform code into Flowchart C: easy to medium
(pointers, casts)

Propagate non-parametric constraints: easy

Propagate parametric constraints: easy if parameters
known

Check proof: easy to medium (depending on how much
assumed known)



Thank You
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